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Corrigendum

Asymptotics of Toeplitz determinants and the emptiness formation probability for the
XY spin chain
Fabio Franchini and Alexander G Abanov 2005 J. Phys. A: Math. Gen. 38 5069–96

In this corrigendum, we correct several numerical mistakes in the bozonization formulae of
the original paper (2005 J. Phys. A: Math. Gen. 38 5069). These errors were localized in
section 8 and in appendix C and change the result of the bozonization treatment and of the
stationary action quantitatively, while not affecting its qualitative interpretation, nor the rest
of the paper’s results.

In section 8, page 5085, the Lagrangian (90) should be

L = 1

2

[
(∂µϑ)2 − 2γ

π
cos(

√
4πϑ)

]
, (90)

where we also use the rescaled time τ ′ = vFτ (omitting the prime for brevity from now on),
with vF ≡ 2

√
1 − h2, the Fermi velocity at γ = 0. In terms of ϑ the density of fermions is

given by ρ = 1√
π
∂τϑ + ρ0.

Correspondingly, equations (91) and (92) should read

ρ|τ=0,0<x<n = ρ0 +
1√
π

∂τϑ(x, τ )|τ=0,0<x<n = ρ0 − ρ̄, (91)

− 1√
π

∂τϑ(x, τ )|τ=0,0<x<n = ρ̄ � ρ0, (92)

and the linearized action (93) is

S ≈ 1

2

∫
dx dτ [(∂µϑ)2 + 4γϑ2]. (93)

In appendix C, starting on page 5092, after equation (C.2), we redefine m2 ≡ 4γ , reflecting
the change in (93). Moreover, one should replace ρ̄ → √

πρ̄ on the right-hand side of
equations (C.1), (C.4), (C.5), (C.7), (C.11) and (C.13).

Finally, the action in equations (C.9) and (C.14) becomes

S0 =
√

πρ̄

2

∫ n

0
f (y) dy, (C.9)

S0 = n2 π2ρ̄2

8

[
1 +

m2n2

16

(
ln

mn

8
+ G − 2

)]
. (C.14)

Compared to the result originally published, the action is rescaled S0 → π
4vs

S0 and the
mass is now defined as m = 2

√
γ . We reprint figures 7–9 to show the rescaled vertical

axis. The complete corrected version of these results can be found in Fabio Franchini’s PhD
graduation thesis, at Stony Brook University, soon available online.
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Figure 7. Plot of the value of the stationary action S0 versus the string length n. The action
S0 is obtained from (C.9) with f (y) given by the numerical solution of the singular integral
equation (C.7). The graph depicts S0(n) for m = 2

√
γ = 0.01, ρ̄ = 0.2. The crossover takes

place around n ∼ 2/m = √
1/γ = 200.
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Figure 8. Plot of the derivative dS0/dn with S0 from (C.9). The plot corresponds to m = 0.01,

ρ̄ = 0.2 and clearly shows a crossover from the quadratic to the linear behaviour at n ∼ 2/m =√
1/γ = 200.
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Figure 9. The solid line is the plot of the stationary action (C.14) against n. This analytical
solution is valid for n � 1/m and corresponds to m = 0.01 and ρ̄ = 0.2. The dotted line
represents the value of the action (C.9) with the source given by numerical solution of the singular
integral equation (C.7). The dashed line corresponds to the zeroth-order, pure Gaussian, solution,
i.e. (C.14) with m ≡ 0, which we include for comparison. We see that the inclusion of the
first-order correction almost doubles the range in which the analytical solution is accurate.


